Toluene diisocyanate manufacturer News DMCHA (N,N-dimethylcyclohexylamine): an effective low-odor polyurethane foaming catalyst selection

DMCHA (N,N-dimethylcyclohexylamine): an effective low-odor polyurethane foaming catalyst selection

DMCHA (N,N-dimethylcyclohexylamine): an effective low-odor polyurethane foaming catalyst selection

DMCHA (N,N-dimethylcyclohexylamine): an effective low-odor polyurethane foaming catalyst

Catalog

  1. Introduction
  2. Overview of polyurethane foaming technology
  3. Basic Characteristics of DMCHA
  4. The application of DMCHA in polyurethane foaming
  5. Comparison of DMCHA with other catalysts
  6. DMCHA product parameters
  7. The safety and environmental protection of DMCHA
  8. DMCHA market prospects
  9. Conclusion

1. Introduction

Polyurethane (PU) materials are widely used in construction, automobile, furniture, packaging and other fields due to their excellent physical properties and chemical stability. Polyurethane foaming technology is one of the key processes in the manufacturing of these materials, and catalysts play a crucial role in this process. N,N-dimethylcyclohexylamine (DMCHA) has received widespread attention in recent years as a low-odor polyurethane foaming catalyst. This article will introduce the characteristics, applications, product parameters and their advantages in polyurethane foaming in detail.

2. Overview of polyurethane foaming technology

Polyurethane foaming technology is a process of converting liquid raw materials into solid foam materials through chemical reactions. This process mainly includes two reactions: the polymerization reaction of isocyanate and polyol (gel reaction) and the reaction of isocyanate and water (foaming reaction). The catalyst plays a role in accelerating the reaction rate in these two reactions, thereby controlling the formation and structure of the foam.

2.1 Gel reaction

Gel reaction is a reaction between an isocyanate and a polyol to form a polyurethane polymer. This reaction determines the strength and elasticity of the foam.

2.2 Foaming reaction

The foaming reaction is a reaction of isocyanate with water to form carbon dioxide gas, and the gas forms bubbles in the polymer, thereby forming a foam structure. This reaction determines the density and porosity of the foam.

3. Basic characteristics of DMCHA

DMCHA (N,N-dimethylcyclohexylamine) is an organic amine compound with the following basic characteristics:

  • Chemical Structure: C8H17N
  • Molecular Weight: 127.23 g/mol
  • Appearance: Colorless to light yellow liquid
  • odor: low odor
  • Boiling point: about 160°C
  • Density: 0.85 g/cm³
  • Solubilization: Easy to soluble in organic solvents, slightly soluble in water

3.1 Low odor characteristics

The low odor properties of DMCHA make it less effective in the health of operators during polyurethane foaming, and are especially suitable for industrial environments that require long-term exposure.

3.2 High-efficiency catalytic performance

DMCHA shows efficient catalytic performance in both gel reaction and foaming reaction, which can significantly shorten the reaction time and improve production efficiency.

4. Application of DMCHA in polyurethane foaming

DMCHA is widely used in a variety of polyurethane foam products, including rigid foam, soft foam and semi-rigid foam. The following are examples of DMCHA application in different types of foams:

4.1 Hard foam

Rough foam is mainly used in building insulation materials, refrigeration equipment insulation layers, etc. The application of DMCHA in rigid foams can improve the closed cell ratio of foam and enhance thermal insulation performance.

4.2 Soft foam

Soft foam is widely used in furniture, mattresses, car seats, etc. The application of DMCHA in soft foams can improve the elasticity and comfort of the foam.

4.3 Semi-rigid foam

Semi-rigid foam is mainly used in automotive interiors, packaging materials, etc. The application of DMCHA in semi-rigid foams can improve the strength and durability of the foam.

5. Comparison of DMCHA with other catalysts

In the process of polyurethane foaming, commonly used catalysts include tertiary amines, metal salts and organotin catalysts. Here is a comparison of DMCHA with these catalysts:

Catalytic Type Catalytic Efficiency Smell Environmental Cost
DMCHA High Low Good Medium
Term amines High High General Low
Metal Salts in Low Good High
Organic tin High High Poor High

5.1 Catalytic efficiency

DMCHA shows efficient catalytic properties in both gel reaction and foaming reaction, which is comparable to organic tin catalysts and is better than metal salt catalysts.

5.2 Odor

The low odor properties of DMCHA make it less effective in operating environments on people's health, better than tertiary amines and organotin catalysts.

5.3 Environmental protection

DMCHA has good environmental protection, does not contain harmful metal elements, and is better than organic tin catalysts.

5.4 Cost

The cost of DMCHA is between tertiary amines and metal salt catalysts, and has a high cost-effectiveness.

6. DMCHA product parameters

The following are the detailed product parameters of DMCHA:

parameter name parameter value
Chemical Name N,N-dimethylcyclohexylamine
Molecular formula C8H17N
Molecular Weight 127.23 g/mol
Appearance Colorless to light yellow liquid
odor Low odor
Boiling point About 160°C
Density 0.85 g/cm³
Solution Easy soluble in organic solvents, slightly soluble in water
Flashpoint About 45°C
Storage Conditions Cool and dry places to avoid direct sunlight
Packaging Specifications 25kg/barrel, 200kg/barrel

7. Safety and environmental protection of DMCHA

7.1 Security

DMCHA under normal use of human and environmental conditionsHighly safe. The following are the safe use suggestions for DMCHA:

  • Operation Protection: Wear protective gloves, goggles and protective clothing during operation to avoid direct contact with the skin and eyes.
  • Ventiation Conditions: The operating environment should maintain good ventilation to avoid inhaling steam.
  • Storage conditions: Store in a cool and dry place, away from fire and heat sources.

7.2 Environmental protection

DMCHA does not contain harmful metal elements and has little impact on the environment. Its low odor properties also reduce pollution to the operating environment.

8. DMCHA market prospects

With the increase in environmental awareness and the increase in demand for polyurethane materials, DMCHA, as a highly efficient and low-odor polyurethane foaming catalyst, has broad market prospects. The following are the market development trends of DMCHA:

8.1 Promotion of environmental protection regulations

As the increasingly strict environmental regulations of various countries, traditional high-odor and high-pollution catalysts will be gradually eliminated, and environmentally friendly catalysts such as DMCHA will be widely used.

8.2 Diversified demand for polyurethane materials

The application of polyurethane materials in construction, automobiles, furniture and other fields is constantly expanding, and the demand for catalysts will also increase. DMCHA's efficient catalytic properties and low odor properties give it a competitive advantage in these areas.

8.3 Technological Innovation

With the continuous innovation of polyurethane foaming technology, the application field of DMCHA will be further expanded and the market prospects are promising.

9. Conclusion

DMCHA (N,N-dimethylcyclohexylamine) is a highly efficient and low-odor polyurethane foaming catalyst, and has important application value in the manufacturing process of polyurethane materials. Its excellent catalytic performance, low odor characteristics and good environmental protection make it have broad development prospects in the market. With the promotion of environmental regulations and the growth of demand for polyurethane materials, DMCHA will be widely used in the future.


Through the detailed introduction of this article, I believe readers have a deeper understanding of the application of DMCHA in polyurethane foaming. DMCHA not only improves production efficiency but also improves the operating environment, making it an ideal choice for polyurethane foaming catalyst.


Extended reading:https://www.newtopchem.com/archives/44977

Extended reading:https://www.bdmaee.net/ms-glue-special-catalyst-ms-glue-catalyst-paint-catalyst/

Extended reading:https://www.bdmaee.net/wp-content/uploads/2022/08/44.jpg

Extended reading:https://www.cyclohexylamine.net/catalyst-8154-polyurethane-delayed-catalyst-8154/

Extended reading:https://www.bdmaee.net/dabco-2039-catalyst-cas3033-62-3-evonik-germany/

Extended reading:https://www.cyclohexylamine.net/polyester-sponge-special-catalyst-sponge-catalyst-dabco-ncm/


Extended reading:https://www.bdmaee.net/foam-delay-catalyst/

Extended reading:https://www.newtopchem.com/archives/44729

Extended reading:https://www.newtopchem.com/archives/1684

Extended reading:https://www.bdmaee.net/fascat2004-catalyst-cas7772-99-8-stannous-chloride/
This article is from the Internet, does not represent the position of Toluene diisocyanate reproduced please specify the source.https://www.chemicalchem.com/archives/37804

author:

Previous article
Next article
Contact Us

Contact us

+86 - 152 2121 6908

Online consultation: QQ交谈

E-mail: sales@newtopchem.com

Working hours: Monday to Friday, 9:00-17:30, closed on holidays
Follow wechat
Scan wechat and follow us

Scan wechat and follow us

Follow Weibo
Back to top
Home
E-mail
Products
Search