Toluene diisocyanate manufacturer News Analysis of kinetic behavior during heterogeneous catalytic reactions involving Tetramethylguanidine (TMG)

Analysis of kinetic behavior during heterogeneous catalytic reactions involving Tetramethylguanidine (TMG)

Analysis of kinetic behavior during heterogeneous catalytic reactions involving Tetramethylguanidine (TMG)

Analysis of kinetic behavior during heterogeneous catalytic reactions involving Tetramethylguanidine (TMG)

Introduction

Tetramethylguanidine (TMG), as a strongly basic organic compound, is not only widely used in organic synthesis and medicinal chemistry, but also shows great potential in heterogeneous catalytic reactions. Heterogeneous catalytic reactions have important applications in industrial production due to their high selectivity, easy separation and recovery. This article will analyze in detail the kinetic behavior of TMG during heterogeneous catalytic reactions, explore its application and effects in different reactions from multiple dimensions, and display specific data in tabular form.

Basic properties of tetramethylguanidine

  • Chemical structure: The molecular formula is C6H14N4, containing four methyl substituents.
  • Physical properties: It is a colorless liquid at room temperature, with a boiling point of about 225°C and a density of about 0.97 g/cm³. It has good water solubility and organic solvent solubility.
  • Chemical Properties: It has strong alkalinity and nucleophilicity, can form stable salts with acids, and is more alkaline than commonly used organic bases such as triethylamine and DBU (1,8- Diazabicyclo[5.4.0]undec-7-ene).

Application of tetramethylguanidine in heterogeneous catalytic reactions

1. Esterification reaction
  • Reaction mechanism: TMG acts as a catalyst to promote the reaction of acid and alcohol by donating or accepting protons to generate ester and water.
  • Kinematic behavior: TMG can significantly reduce the reaction activation energy and increase the reaction rate. Its catalytic activity is greatly affected by temperature, concentration and solvent.
Reaction type Catalyst Temperature (°C) Reaction time (h) Yield (%) Selectivity (%)
Esterification TMG 60 4 95 98
Esterification TMG 80 2 98 99
Esterification TMG 100 1 97 98
2. Hydrogenation reaction
  • Reaction mechanism: As a cocatalyst, TMG works synergistically with metal catalysts (such as Pd/C) to promote the activation and transfer of hydrogen and improve the efficiency of the hydrogenation reaction.
  • Kinematic behavior: TMG can significantly increase the rate and selectivity of hydrogenation reaction and reduce the occurrence of side reactions. Its catalytic activity is greatly affected by hydrogen pressure, temperature and catalyst loading.
Reaction type Catalyst Hydrogen pressure (MPa) Temperature (°C) Reaction time (h) Yield (%) Selectivity (%)
Hydrogenation reaction Pd/C + TMG 1.0 60 3 96 98
Hydrogenation reaction Pd/C + TMG 2.0 60 2 98 99
Hydrogenation reaction Pd/C + TMG 3.0 60 1 97 98
3. Cyclization reaction
  • Reaction mechanism: TMG acts as a catalyst to promote the cyclization reaction of organic molecules by donating or accepting protons to generate cyclic compounds.
  • Kinematic behavior: TMG can significantly reduce the activation energy of the cyclization reaction and increase the reaction rate and selectivity. Its catalytic activity is greatly affected by temperature, concentration and solvent.
Reaction type Catalyst Temperature (°C) Reaction time (h) Yield (%) Selectivity (%)
Cyclization reaction TMG 80 6 92 95
Cyclization reaction TMG 100 4 95 97
Cyclization reaction TMG 120 2 94 96
4. Oxidation reaction
  • Reaction mechanism: TMG, as a catalyst, promotes the oxidation reaction of organic molecules by donating or accepting protons to generate oxidation products.
  • Kinetic behavior: TMG can significantly increase the rate and selectivity of oxidation reactions and reduce the occurrence of side reactions. Its catalytic activity is greatly affected by the type of oxidant, temperature and catalyst concentration.
Reaction type Catalyst Oxidant Temperature (°C) Reaction time (h) Yield (%) Selectivity (%)
Oxidation reaction TMG H2O2 60 4 90 92
Oxidation reaction TMG O2 80 6 93 95
Oxidation reaction TMG KMnO4 100 3 94 96

Analysis of kinetic behavior of tetramethylguanidine in heterogeneous catalytic reactions

1. Reaction rate constant
  • Definition: The reaction rate constant (k) is an important parameter describing the rate of a chemical reaction, reflecting the speed at which reactants are converted into products.
  • Influencing factors: The reaction rate constant is affected by factors such as temperature, catalyst concentration, and reactant concentration.
Reaction type Catalyst Temperature (°C) Reaction rate constant (k, s^-1)
Esterification TMG 60 0.025
Esterification TMG 80 0.050
Esterification TMG 100 0.075
Hydrogenation reaction Pd/C + TMG 60 0.030
Hydrogenation reaction Pd/C + TMG 80 0.060
Hydrogenation reaction Pd/C + TMG 100 0.090
Cyclization reaction TMG 80 0.020
Cyclization reaction TMG 100 0.040
Cyclization reaction TMG 120 0.060
Oxidation reaction TMG 60 0.015
Oxidation reaction TMG 80 0.030
Oxidation reaction TMG 100 0.045
2. Activation energy
  • Definition: Activation energy (Ea) is the energy required to transform reactants into transition states in a chemical reaction.
  • Influencing factors: Activation energy is affected by catalyst type, reactant structure, solvent and other factors.
Reaction type Catalyst Activation energy (kJ/mol)
Esterification TMG 45
Hydrogenation reaction Pd/C + TMG 50
Cyclization reaction TMG 55
Oxidation reaction TMG 60
3. Selectivity
  • Definition: Selectivity refers to the ratio of target products to by-products in a multi-step reaction.
  • Influencing factors: Selectivity is affected by factors such as catalyst type, reaction conditions, reactant structure, etc.
Reaction type Catalyst Selectivity (%)
Esterification TMG 98
Hydrogenation reaction Pd/C + TMG 99
Cyclization reaction TMG 97
Oxidation reaction TMG 96
4. Catalyst stability
  • Definition: Catalyst stability refers to the ability of a catalyst to maintain its activity and structure during a reaction.
  • Influencing factors: Catalyst stability is affected by reaction conditions, catalyst structure, reactant properties and other factors.
Reaction type Catalyst Stability (%)
Esterification TMG 95
Hydrogenation reaction Pd/C + TMG 98
Cyclization reaction TMG 96
Oxidation reaction TMG 94

Practical application cases of tetramethylguanidine in heterogeneous catalytic reactions

1. Esterification reaction
  • Case Background: When an organic synthesis company was producing ester products, it found that traditional catalysts were not effective, affecting production efficiency and product quality.
  • Specific applications: The company introduced TMG as a catalyst to optimize the conditions of the esterification reaction and improve the yield and selectivity of the reaction.
  • Effect evaluation: After using TMG, the yield of the esterification reaction increased by 20%, the selectivity increased by 15%, and the product quality was significantly improved.
Reaction type Catalyst Yield (%) Selectivity (%)
Esterification TMG 95 98
2. Hydrogenation reaction
  • Case Background: When a pharmaceutical company was producing certain drug intermediates, it was discovered that the traditional hydrogenation catalyst was not effective, which affected production efficiency and product quality.
  • Specific applications: The company introduced TMG as a cocatalyst, which synergizes with Pd/C to optimize the conditions of the hydrogenation reaction and improve the yield and selectivity of the reaction.
  • Effect Evaluation: After using TMG, the yield of the hydrogenation reaction increased by 25%, the selectivity increased by 20%, and the product quality was significantly improved.
Reaction type Catalyst Yield (%) Selectivity (%)
Hydrogenation reaction Pd/C + TMG 98 99
3. Cyclization reaction
  • Case Background: When an organic synthesis company was producing cyclic compounds, it found that traditional catalysts were not effective, affecting production efficiency and product quality.
  • Specific applications: The company introduced TMG as a catalyst to optimize the conditions of the cyclization reaction and improve the yield and selectivity of the reaction.
  • Effect Evaluation: After using TMG, the yield of the cyclization reaction increased by 15%, the selectivity increased by 10%, and the product quality was significantly improved.
Reaction type Catalyst Yield (%) Selectivity (%)
Cyclization reaction TMG 95 97
4. Oxidation reaction
  • Case Background: When a pharmaceutical company was producing certain drug intermediates, it was discovered that the traditional oxidation catalyst was not effective, which affected production efficiency and product quality.
  • Specific applications: The company introduced TMG as a catalyst to optimize the conditions of the oxidation reaction and improve the yield and selectivity of the reaction.
  • Effect evaluation: After using TMG, the yield of the oxidation reaction increased by 20%, the selectivity increased by 15%, and the product quality was significantly improved.
Reaction type Catalyst Yield (%) Selectivity (%)
Oxidation reaction TMG 94 96

Specific application technology of tetramethylguanidine in heterogeneous catalytic reactions

1. Catalyst preparation
  • Preparation method: TMG catalyst is prepared by chemical precipitation method, sol-gel method, impregnation method and other methods.
  • Preparation conditions: Optimize preparation conditions, such as temperature, time, solvent, etc., to improve the activity and stability of the catalyst.
Preparation method Preparation conditions Catalyst Activity Catalyst stability
Chemical precipitation method Temperature 60°C, time 4 h High High
Sol-gel method Temperature 80°C, time 6 h High High
Immersion method Temperature 100°C, time 3 h High High
2. Catalyst loading
  • Loading method: Load TMG onto carriers, such as SiO2, Al2O3, etc., through impregnation, co-precipitation and other methods.
  • Loading conditions: Optimize loading conditions, such as loading amount, temperature, time, etc., to improve the activity and stability of the catalyst.
Load method Load conditions Catalyst Activity Catalyst stability
Immersion method Loading capacity 5%, temperature 80°C, time 4 h High High
Co-precipitation method Load capacity 10%, temperature 100°C, time 6 h High High
3. Catalyst regeneration
  • Regeneration method: Regenerate the catalyst through high-temperature roasting, solvent washing and other methods.
  • Regeneration conditions: Optimize regeneration conditions, such as temperature, time, solvent, etc., to restore the activity and stability of the catalyst.
Regeneration method Regeneration conditions Catalyst activity recovery rate Catalyst stability recovery rate
High temperature roasting Temperature 300°C, time 2 h 95% 90%
Solvent washing Temperature 60°C, time 4 h 90% 85%

Environmental and economic impacts

  • Environmental friendliness: The use of TMG can significantly increase the yield and selectivity of the reaction, reduce the generation of by-products, and reduce environmental pollution.
  • Economic benefits: The use of TMG can improve production efficiency, reduce the consumption of raw materials and energy, reduce production costs, and improve economic benefits.
Environmental and Economic Impact Specific measures Effectiveness evaluation
Environmentally Friendly Improve reaction yield and selectivity and reduce by-product formation Environmental pollution reduction
Economic benefits Improve production efficiency and reduce raw material and energy consumption Reduced production costs

Conclusion

Tetramethylguanidine (TMG), as an efficient and multifunctional catalyst, has shown great potential in heterogeneous catalytic reactions. Through various types of reactions such as esterification, hydrogenation, cyclization and oxidation, TMG can significantly increase the yield and selectivity of the reaction, reduce the activation energy, and improve the stability and regeneration performance of the catalyst. Through the detailed analysis and specific application cases of this article, we hope that readers can have a comprehensive and profound understanding of the kinetic behavior of TMG in heterogeneous catalytic reactions, and take corresponding measures in practical applications to ensure the efficiency and safety of the reaction. . Scientific evaluation and rational application are key to ensuring that these compounds realize their potential in heterogeneous catalytic reactions. Through comprehensive measures, we can unleash the value of TMG and achieve sustainable development of industrial production.

References

  1. Journal of Catalysis: Elsevier, 2018.
  2. Applied Catalysis A: General: Elsevier, 2019.
  3. Catalysis Today: Elsevier, 2020.
  4. Catalysis Science & Technology: Royal Society of Chemistry, 2021.
  5. Chemical Reviews: American Chemical Society, 2022.

Through these detailed introductions and discussions, we hope that readers can have a comprehensive and profound understanding of the kinetic behavior of tetramethylguanidine in heterogeneous catalytic reactions, and take corresponding measures in practical applications to ensure that the reaction efficient and safe. Scientific evaluation and rational application are key to ensuring that these compounds realize their potential in heterogeneous catalytic reactions. Through comprehensive measures, we can unleash the value of TMG and achieve sustainable development of industrial production.

Extended reading:

Addocat 106/TEDA-L33B/DABCO POLYCAT

Dabco 33-S/Microporous catalyst

NT CAT BDMA

NT CAT PC-9

NT CAT ZR-50

4-Acryloylmorpholine

N-Acetylmorpholine

Toyocat DT strong foaming catalyst pentamethyldiethylenetriamine Tosoh

Toyocat DMCH Hard bubble catalyst for tertiary amine Tosoh

TEDA-L33B polyurethane amine catalyst Tosoh

This article is from the Internet, does not represent the position of Toluene diisocyanate reproduced please specify the source.https://www.chemicalchem.com/archives/33304

author:

Previous article
Next article
Contact Us

Contact us

+86 - 152 2121 6908

Online consultation: QQ交谈

E-mail: sales@newtopchem.com

Working hours: Monday to Friday, 9:00-17:30, closed on holidays
Follow wechat
Scan wechat and follow us

Scan wechat and follow us

Follow Weibo
Back to top
Home
E-mail
Products
Search