Overview of the application of zinc isoctanoate in the rubber industry
Zinc Octoate (Zinc Octoate), chemically named zinc octoate, is an important organic zinc compound and is widely used in many fields, especially in the rubber industry as a stabilizer and accelerator. Its chemical formula is Zn(C8H15O2)2 and its molecular weight is 356.74 g/mol. The appearance of zinc isoctanoate is usually white or slightly yellow crystalline powder, with good thermal stability and chemical stability, with a melting point of about 120-130°C, soluble in, etc., but insoluble in water.
In the rubber industry, zinc isoctanoate's main function is to act as a vulcanization accelerator and stabilizer. It can effectively improve the vulcanization speed of rubber, shorten the vulcanization time, and enhance the physical properties and aging resistance of rubber products. In addition, zinc isoctanoate also has excellent antioxidant, ultraviolet resistance and weather resistance, and can maintain the stability and durability of rubber materials in harsh environments such as high temperature and high humidity.
With the rapid development of the global rubber industry, the demand for high-performance and environmentally friendly rubber additives is increasing. As an efficient and environmentally friendly additive, zinc isoctanoate has gradually replaced the traditional vulcanization accelerator containing heavy metals such as lead and cadmium, and has become an indispensable and important raw material in the modern rubber industry. This article will discuss in detail the application of zinc isoctanoate in the rubber industry, including its product parameters, mechanism of action, synergistic effects with other additives, and future development trends.
Product parameters and quality standards
The quality and performance of zinc isoctanoate directly affect its application effect in the rubber industry. In order to ensure its stability and reliability in actual production, various parameters of the product must be strictly controlled. The following are the main product parameters of zinc isoctanoate and their corresponding quality standards:
1. Chemical composition and purity
parameters | Standard Value | Remarks |
---|---|---|
Zinc content (Zn) | ≥12.5% | From metal zinc |
Poreic acid content (C8H15O2) | ≥47.5% | From pore root |
Moisture | ≤0.5% | Dry weight loss |
Ash | ≤0.1% | Inorganic impurities content |
2. Physical properties
parameters | Standard Value | Remarks |
---|---|---|
Appearance | White or slightly yellow crystalline powder | No obvious impurities |
Melting point | 120-130°C | Good thermal stability |
Density | 1.1-1.2 g/cm³ | Measurement at room temperature |
Solution | Solved in, etc. organic solvents | Insoluble in water |
3. Thermal Stability
parameters | Standard Value | Remarks |
---|---|---|
Thermal decomposition temperature | >200°C | Stay stable at high temperatures |
Thermal weight loss rate | ≤5% | Heat at 200°C for 1 hour |
4. Mechanical properties
parameters | Standard Value | Remarks |
---|---|---|
Particle size distribution | D50: 5-10 μm | Suitable for rubber processing |
Hardness | Mohs hardness: 2-3 | Easy to disperse |
5. Safety and environmental protection
parameters | Standard Value | Remarks |
---|---|---|
Lead content | ≤10 ppm | Complied with RoHS standards |
Cadmium content | ≤1 ppm | Complied with RoHS standards |
Mercury content | ≤1 ppm | Complied with RoHS standards |
Hexavalent chromium | ≤1 ppm | Complied with RoHS standards |
6. Biodegradability
parameters | Standard Value | Remarks |
---|---|---|
Biodegradation rate | ≥90% | Full degradation within 28 days |
Toxicity | Non-toxic | Environmentally friendly |
Mechanism of action of zinc isoctanoate
The main role of zinc isoctanoate in the rubber industry is to act as a vulcanization accelerator and stabilizer. The mechanism of action can be explained from the following aspects:
1. Vulcanization promotion effect
Vulcanization refers to the process in which rubber molecular chains form a three-dimensional network structure through cross-linking reaction, so that rubber materials can obtain higher strength, elasticity and durability. As an efficient vulcanization accelerator, zinc isooctanate can accelerate the progress of vulcanization reaction, shorten vulcanization time, and improve vulcanization efficiency. Specifically, zinc isoctanoate promotes the vulcanization reaction through the following ways:
- Providing active zinc ions: Zinc isooctanoate decomposes zinc ions (Zn²⁺) during vulcanization. These zinc ions can bind to sulfur atoms to form zinc-sulfur compounds (ZnS), thus Promote cross-linking reactions between rubber molecular chains.
- Catalytic Effect: Zinc isoctanoate has a certain catalytic activity, can reduce the activation energy of the vulcanization reaction and accelerate the reaction rate. Studies have shown that zinc isoctanoate can initiate a vulcanization reaction at lower temperatures, and is especially suitable for low-temperature vulcanization processes.
- Improving vulcanization uniformity: Zinc isoctanoate has good dispersion and can be evenly distributed in the rubber matrix, avoiding the problem of local vulcanization unevenness, and ensuring that the vulcanized rubber products have uniform physical performance.
2. Stabilization
In addition to promoting vulcanization reaction, zinc isooctanoate also has a significant stabilization effect, which can extend the service life of rubber materials and prevent it from aging and deteriorating during use. Specifically, the stabilization effect of zinc isoctanoate is mainly reflected in the following aspects:
- Antioxidation effect: Rubber materials are easily oxidized by oxygen during long-term use, resulting in molecular chain breakage and performance deterioration. Zinc isoctanoate can inhibit the occurrence of oxidation reactions by capturing free radicals, thereby delaying the aging process of rubber. Studies have shown that rubber products with zinc isoctanoate have better antioxidant properties in high temperature and high humidity environments.
- Ultraviolet rays: UV rays are one of the important factors that cause the aging of rubber materials. Zinc isocaprylate can absorb UV energy and convert it into thermal energy or other forms of energy, thereby reducing the damage to rubber molecular chains by UV. Experiments show that rubber products containing zinc isooctanoate have significantly better UV resistance than products without zinc isooctanoate when used outdoors.
- Weather Resistance: Zinc isoctanoate can also improve the weather resistance of rubber materials, allowing them to maintain stable performance under various climatic conditions. Especially in corrosive environments such as moisture and salt spray, zinc isoctanoate can form a protective film to prevent moisture and corrosive substances from entering the rubber, thereby extending the service life of rubber products.
3. Improve processing performance
Zinc isooctanate not only performs excellently in vulcanization and stabilization, but also significantly improves the processing properties of rubber materials. Specifically, the addition of zinc isoctanoate can bring the following benefits:
- Reduce viscosity: Zinc isoctanoate has a lubricating effect and can reduce the viscosity of the rubber mixture, making it easier to flow and mold. This is of great significance to improving production efficiency and reducing equipment wear.
- Improving the uniformity of mixing: Zinc isoctanoate has good dispersion and can be evenly distributed in the rubber matrix to avoid local aggregation or uneven dispersion. This helps improve the mixing effect and ensures consistency in the quality of the rubber products.
- Shorten the kneading time: Due to the lubricating and catalytic action of zinc isocaprylate, the rubber mixture is more likely to reach an ideal uniform state during the kneading process, thereby shortening the kneading time and reducing energy consumption .
Synthetic effect of zinc isoctanoate and other additives
In practical applications, zinc isoctanoate is usually used together with other rubber additives to fully utilize its advantages and make up for their respective shortcomings. Here are several common additives and their synergistic effects with zinc isoctanoate:
1. Synergistic effect with sulfur
Sulphur is a commonly used crosslinking agent in rubber vulcanization, while zinc isoctanoate acts synergistically with it as a vulcanization accelerator. Studies have shown that the combination of zinc isoctanoate and sulfur can significantly improve the vulcanization efficiency, shorten the vulcanization time, and at the same time changeGood physical properties of vulcanized rubber. Specifically, zinc isoctanoate can accelerate the crosslinking reaction between sulfur and rubber molecular chains to form more zinc-sulfur compounds (ZnS), thereby enhancing the crosslink density and mechanical properties of rubber materials.
In addition, zinc isoctanoate can improve the dispersion of sulfur in the rubber matrix, avoid the aggregation of sulfur particles, and ensure the uniformity of the vulcanization reaction. The experimental results show that the tensile strength, tear strength and wear resistance of the sulfur vulcanized rubber are improved by adding an appropriate amount of zinc isooctanoate.
2. Synergistic effects with anti-aging agents
Anti-aging agent is a type of additive used to delay the aging process of rubber materials. Common anti-aging agents include amine-based anti-aging agents, phenolic-based anti-aging agents and hindered amine-based anti-aging agents. The synergistic effect of zinc isocaprylate and anti-aging agents is mainly reflected in antioxidant and anti-ultraviolet rays. Studies have shown that the combination of zinc isoctanoate and anti-aging agents can significantly improve the antioxidant and ultraviolet properties of rubber materials and extend their service life.
For example, the combination of zinc isoctanoate and N-yl-α-naphthaleneamine (PAN) anti-aging agent can effectively inhibit the oxidative degradation of rubber materials in high temperature and high humidity environments, while improving its anti-ultraviolet ability. Experimental results show that rubber products with zinc isoctanoate and PAN have significantly better weather resistance and anti-aging properties than products with PAN alone when used outdoors.
3. Synergistic effects with plasticizers
Plasticizer is a class of additives used to improve the flexibility and processing properties of rubber materials. Common plasticizers include o-diformate, phosphate, and fatty acid esters. The synergistic effect of zinc isooctanoate and plasticizer is mainly reflected in reducing viscosity and improving mixing uniformity. Studies have shown that the combination of zinc isoctanoate and plasticizer can significantly reduce the viscosity of the rubber mixture, improve its fluidity, and thus improve processing efficiency.
In addition, zinc isoctanoate can also improve the dispersion of plasticizers in the rubber matrix, avoid the migration or precipitation of plasticizers, and ensure the long-term stable performance of rubber products. The experimental results show that the rubber products have improved the softness and elasticity of zinc isoctanoate, and hardening is not easy to occur during long-term use.
4. Synergistic effect with filler
Fillers are a class of additives used to improve the physical properties of rubber materials and reduce costs. Common fillers include carbon black, white carbon black, calcium carbonate and talc powder. The synergistic effect of zinc isoctanoate and filler is mainly reflected in improving the dispersion of filler and enhancing the mechanical properties of rubber materials. Research shows that zinc isoctanoate can undergo chemical adsorption or physical adsorption with the filler surface, forming a protective film to prevent the aggregation of filler particles and ensure its uniform dispersion in the rubber matrix.
In addition, zinc isoctanoate can also enhance the interaction between the filler and the rubber molecular chain and improve the reinforcement effect of the filler. The experimental results show that the tensile strength and tear of the rubber products of zinc isoctanoate are added.Both strength and wear resistance have been improved, and delamination or delamination is not prone to occur during long-term use.
Progress in domestic and foreign research and application examples
In recent years, the application of zinc isoctanoate in the rubber industry has attracted widespread attention, and many domestic and foreign scholars have conducted in-depth research on it. The following are some representative research results and application examples:
1. Progress in foreign research
-
U.S. research: Researchers at the Oak Ridge National Laboratory in the United States found that zinc isoctanoate is vulcanized during the vulcanization of natural rubber (NR) and butylene rubber (SBR) Shows excellent promotion effect. Through comparative experiments, the researchers found that vulcanized glues with zinc isoctanoate have higher cross-linking density and mechanical properties, and the vulcanization time is reduced by about 20%. In addition, the study also pointed out that zinc isoctanoate can significantly improve the aging resistance of vulcanized glue and extend its service life.
-
Germany Research: Researchers from the Fraunhofer Institute in Germany have developed a new zinc/sulfur composite vulcanization system and applied it to automobiles Tires are being manufactured. Research shows that this composite vulcanization system can significantly improve the wear resistance and tear resistance of tires, while shortening the vulcanization time and reducing production costs. In addition, the study also found that the addition of zinc isoctanoate can improve the UV resistance of the tire and extend its life span when used outdoors.
-
Japanese research: Researchers from the University of Tokyo, Japan studied the mechanism of action of zinc isoctanoate in the vulcanization of neoprene (CR) through molecular simulation technology. Research shows that zinc isoctanoate can react with chlorine atoms on the molecular chain of neoprene to form zinc-chlorine compounds (ZnCl), thereby promoting the progress of the vulcanization reaction. In addition, the study also found that the addition of zinc isoctanoate can significantly improve the oil and heat resistance of neoprene, making it promising in industrial seals and anticorrosion coatings.
2. Domestic research progress
-
Research from the Chinese Academy of Sciences: Researchers from the Institute of Chemistry of the Chinese Academy of Sciences have developed a new environmentally friendly vulcanization accelerator based on zinc isooctanoate and applied it to the manufacturing of high-speed rail shock absorbers middle. Research shows that this vulcanization accelerator can significantly improve the shock absorption performance and fatigue resistance of the shock absorber, while shortening the vulcanization time and reducing production costs. In addition, the study also pointed out that the addition of zinc isoctanoate can improve the anti-aging performance of the shock absorber and extend its service life.
-
Research at Tsinghua University: Researchers from the Department of Materials Science and Engineering at Tsinghua University studied the application effect of zinc isoctanoate in silicone rubber (SiR) through experiments. Research shows that zinc isoctanoate can significantly improve the vulcanization efficiency and mechanical properties of silicone rubber, while improving its high temperature and weather resistance. In addition, the study also found that the addition of zinc isoctanoate can improve the biocompatibility of silicone rubber and make its application prospects in the medical field broad.
-
Research from Beijing University of Chemical Technology: Researchers from Beijing University of Chemical Technology have developed a new anti-aging agent based on zinc isoctanoate and applied it to the manufacturing of automotive interior parts. Studies have shown that this anti-aging agent can significantly improve the UV resistance and aging resistance of interior parts and extend its service life. In addition, the study also found that the addition of zinc isoctanoate can improve the appearance quality and feel of interior parts and improve its market competitiveness.
Future development trends and prospects
With the increase in global environmental awareness and the rapid development of the rubber industry, zinc isoctanoate, as an efficient and environmentally friendly rubber additive, its market demand will continue to grow. In the future, the application of zinc isoctanoate in the rubber industry will show the following development trends:
1. Greening and environmentally friendly
As countries become increasingly strict with environmental protection requirements, traditional sulfurization accelerators containing heavy metals such as lead and cadmium have gradually been eliminated, and replaced by more environmentally friendly organic zinc compounds, such as zinc isoctanoate. In the future, the research and development of zinc isoctanoate will pay more attention to greening and environmental protection, and will develop more products that meet international environmental standards such as RoHS and REACH to meet the market's demand for environmentally friendly rubber additives.
2. Functionalization and multifunctionalization
In order to meet the needs of different application scenarios, zinc isoctanoate in the future will develop towards functionalization and multifunctionalization. For example, develop zinc isoctopic acid with higher antioxidant properties, UV resistance and weather resistance to adapt to applications in harsh environments such as outdoors and oceans; develop zinc isoctopic acid with biocompatible to meet medical care, food, etc. Special requirements for rubber materials in the field.
3. Efficiency and low cost
With the intensification of market competition, rubber manufacturers have put forward higher requirements for the efficiency and cost reduction of additives. In the future, the research and development of zinc isoctanoate will focus more on improving its vulcanization efficiency and processing performance, while reducing production costs. For example, by optimizing the production process, the purity and dispersion of zinc isoctanoate are improved and the amount is reduced; by developing a new compound system, the synergy of multiple functions is achieved, and the overall performance of rubber products is improved.
4. Intelligence and customization
With the continuous development of intelligent manufacturing technology, the future rubber industry will be moreIntelligent and customized. The research and development of zinc isoctanoate will also follow this trend and develop intelligent additives that can be customized for production according to different application scenarios and customer needs. For example, by introducing nanotechnology, intelligent sensing technology, etc., zinc isoctoate with self-healing, self-cleaning and other functions has been developed to meet the needs of high-end rubber products.
Conclusion
To sum up, zinc isoctanoate, as an efficient and environmentally friendly rubber additive, has a wide range of application prospects in the rubber industry. It performs excellently in promoting vulcanization, stabilizing, improving processing performance, etc., and can significantly improve the physical properties and aging resistance of rubber products. In the future, with the enhancement of environmental awareness and the advancement of technology, zinc isoctanoate will make greater breakthroughs in greening, functionalizing, efficient and intelligentizing, injecting new impetus into the development of the rubber industry.
: : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : :Extended reading:https://www.morpholine.org/polycat-sa102-niax-a -577/
Extended reading:https://www.bdmaee.net/ dibutyl-stannane-diacetate/
Extended reading:https:// www.newtopchem.com/archives/category/products/page/134
Extended reading:https://www.cyclohexylamine.net/catalyst-c-225-polyurethane-retardation-catalyst-c-225/
Extended reading:https://www.newtopchem.com/archives/732
Extended reading:https://www.cyclohexylamine.net/pc-cat-td-25- dabco-tertiary-amine-catalyst/
Extended reading:https://www.newtopchem. com/archives/40082
Extended reading:https://www.bdmaee.net/polycat-77-catalyst-cas3855-32-1-evonik-germany/
Extended reading:https://www.morpholine.org/dabco-pt303-low-odor-tertiary-amine-catalyst -dabco-pt303/
Extended reading:https://www .newtopchem.com/archives/category/products/page/18