Toluene diisocyanate manufacturer News Applications of Bis(3-Dimethylaminopropyl) Amino Isopropanol ZR-50 in Polyurethane Systems

Applications of Bis(3-Dimethylaminopropyl) Amino Isopropanol ZR-50 in Polyurethane Systems

Applications of Bis(3-Dimethylaminopropyl) Amino Isopropanol ZR-50 in Polyurethane Systems

Applications of Bis(3-Dimethylaminopropyl) Amino Isopropanol ZR-50 in Polyurethane Systems

Introduction

Polyurethane (PU) systems are a versatile class of polymers that find applications in a wide range of industries, from automotive and construction to textiles and electronics. The performance of these systems is heavily influenced by the choice of additives, catalysts, and stabilizers. One such additive that has gained significant attention in recent years is Bis(3-dimethylaminopropyl) amino isopropanol, commonly referred to as ZR-50. This compound, with its unique chemical structure and properties, offers numerous advantages when incorporated into polyurethane formulations. In this article, we will explore the various applications of ZR-50 in polyurethane systems, delving into its chemistry, benefits, and potential challenges. We will also provide a comprehensive overview of the product parameters and compare it with other similar compounds using tables for clarity.

What is Bis(3-Dimethylaminopropyl) Amino Isopropanol ZR-50?

Bis(3-dimethylaminopropyl) amino isopropanol, or ZR-50, is a tertiary amine-based catalyst used primarily in polyurethane foams and coatings. Its molecular structure consists of two 3-dimethylaminopropyl groups attached to an isopropanol backbone, making it a powerful yet balanced catalyst. The presence of the amino groups provides strong catalytic activity, while the isopropanol moiety imparts solubility and compatibility with various polyurethane precursors.

ZR-50 is known for its ability to accelerate the reaction between isocyanates and hydroxyl groups, which is crucial for the formation of polyurethane. However, unlike some other catalysts, ZR-50 does not overly promote the urea formation side reactions, which can lead to undesirable foam collapse or poor mechanical properties. Instead, it strikes a balance between reactivity and stability, making it an ideal choice for a wide range of polyurethane applications.

Chemical Structure and Properties

The chemical structure of ZR-50 can be represented as follows:

CH3
   
    N-(CH2)3-N(CH3)2
   /          
CH2-CH(OH)-CH2-N-(CH2)3-N(CH3)2
             /
    CH3      CH3

This structure gives ZR-50 several key properties that make it suitable for polyurethane systems:

  1. High Catalytic Activity: The presence of two dimethylaminopropyl groups ensures that ZR-50 is highly effective in promoting the reaction between isocyanates and hydroxyl groups. This leads to faster curing times and improved productivity in manufacturing processes.

  2. Solubility and Compatibility: The isopropanol backbone enhances the solubility of ZR-50 in both polar and non-polar solvents, making it compatible with a wide range of polyurethane formulations. This property is particularly important in coating and adhesive applications where uniform dispersion of the catalyst is essential.

  3. Balanced Reactivity: ZR-50 is designed to promote the desired polyurethane reactions without excessively accelerating side reactions like urea formation. This results in better control over foam density, cell structure, and mechanical properties.

  4. Low Volatility: Unlike some other tertiary amines, ZR-50 has a relatively low volatility, which reduces the risk of emissions during processing. This makes it a safer and more environmentally friendly option for industrial use.

  5. Thermal Stability: ZR-50 exhibits good thermal stability, allowing it to withstand the high temperatures often encountered during polyurethane processing. This ensures that the catalyst remains active throughout the entire reaction process.

Product Parameters

To better understand the characteristics of ZR-50, let’s take a look at its key product parameters in a table format:

Parameter Value
Chemical Name Bis(3-dimethylaminopropyl) amino isopropanol
CAS Number 78-92-2
Molecular Weight 229.4 g/mol
Appearance Colorless to pale yellow liquid
Density 0.96 g/cm³ at 20°C
Viscosity 50-100 cP at 25°C
Boiling Point 250-260°C
Flash Point >100°C
pH (1% aqueous solution) 10-11
Solubility in Water Soluble
Solubility in Organic Solvents Soluble in alcohols, ketones, esters
Refractive Index 1.470-1.475 at 20°C
Storage Temperature 5-30°C
Shelf Life 12 months when stored properly

These parameters highlight the versatility and robustness of ZR-50, making it a reliable choice for polyurethane manufacturers. The low viscosity and good solubility ensure that it can be easily incorporated into formulations, while the high boiling point and flash point make it safe to handle in industrial settings.

Applications of ZR-50 in Polyurethane Systems

1. Flexible Foams

Flexible polyurethane foams are widely used in furniture, bedding, automotive seating, and packaging materials. ZR-50 plays a crucial role in the production of these foams by promoting the reaction between isocyanates and polyols, leading to the formation of a stable foam structure.

Benefits of ZR-50 in Flexible Foams

  • Improved Foam Stability: ZR-50 helps to achieve a more uniform cell structure, reducing the likelihood of foam collapse or shrinkage. This results in higher-quality foams with better physical properties.

  • Faster Cure Times: The high catalytic activity of ZR-50 allows for faster curing of the foam, increasing production efficiency. This is particularly beneficial in large-scale manufacturing operations where time is of the essence.

  • Better Mechanical Properties: By controlling the rate of urea formation, ZR-50 ensures that the foam retains its flexibility and resilience. This is especially important in applications like mattresses and seat cushions, where comfort and durability are key factors.

  • Reduced Emissions: The low volatility of ZR-50 means that fewer volatile organic compounds (VOCs) are released during the foaming process. This not only improves workplace safety but also reduces environmental impact.

Comparison with Other Catalysts

To further illustrate the advantages of ZR-50, let’s compare it with some other commonly used catalysts in flexible foam applications:

Catalyst Advantages Disadvantages
ZR-50 Balanced reactivity, low emissions, good foam stability Slightly higher cost than some alternatives
DABCO T-12 (Stannous Octoate) Excellent for rigid foams, low cost Can cause foam collapse in flexible foams
Polycat 8 (Triethylenediamine) Fast cure, good for high-density foams Can lead to excessive urea formation
Amine Blends (e.g., Polycat 8 + Dabco B-9) Customizable reactivity, good for specialized applications More complex formulation required

As shown in the table, ZR-50 offers a unique combination of benefits that make it particularly well-suited for flexible foam applications. While it may be slightly more expensive than some alternatives, the improved foam quality and reduced emissions justify the investment for many manufacturers.

2. Rigid Foams

Rigid polyurethane foams are used in insulation, building panels, refrigerators, and appliances. These foams require a different set of properties compared to flexible foams, including higher strength, lower thermal conductivity, and excellent dimensional stability. ZR-50 can be effectively used in rigid foam formulations to achieve these desired properties.

Benefits of ZR-50 in Rigid Foams

  • Enhanced Insulation Performance: ZR-50 promotes the formation of smaller, more uniform cells in rigid foams, which improves their insulating properties. This is particularly important in applications like building insulation, where energy efficiency is a priority.

  • Improved Dimensional Stability: By controlling the rate of urea formation, ZR-50 helps to maintain the integrity of the foam structure, preventing warping or distortion over time. This is crucial for applications like roofing panels and wall boards, where dimensional accuracy is essential.

  • Faster Demold Time: The high catalytic activity of ZR-50 allows for faster demolding of rigid foams, increasing production throughput. This is especially beneficial in continuous production lines where speed and efficiency are critical.

  • Lower Density: ZR-50 can help to reduce the density of rigid foams without compromising their strength. This results in lighter, more cost-effective products that are easier to handle and transport.

Comparison with Other Catalysts

Let’s compare ZR-50 with some other catalysts commonly used in rigid foam applications:

Catalyst Advantages Disadvantages
ZR-50 Balanced reactivity, fast demold time, good insulation performance Slightly higher cost than some alternatives
DABCO T-12 (Stannous Octoate) Excellent for rigid foams, low cost Can cause foam collapse in flexible foams
Polycat 8 (Triethylenediamine) Fast cure, good for high-density foams Can lead to excessive urea formation
Metallic Catalysts (e.g., Zinc Stearate) Good for improving hardness and strength Can slow down the overall reaction

Once again, ZR-50 stands out for its balanced reactivity and ability to improve key properties like insulation performance and dimensional stability. While metallic catalysts can enhance hardness and strength, they often slow down the overall reaction, which can be a disadvantage in high-speed production environments.

3. Coatings and Adhesives

Polyurethane coatings and adhesives are used in a wide range of applications, from automotive paints to industrial bonding. ZR-50 can be effectively incorporated into these formulations to improve their performance and processing characteristics.

Benefits of ZR-50 in Coatings and Adhesives

  • Faster Cure Times: The high catalytic activity of ZR-50 accelerates the curing process, allowing for faster drying and shorter cycle times. This is particularly important in industrial settings where rapid turnaround is necessary.

  • Improved Adhesion: ZR-50 promotes better adhesion between the coating or adhesive and the substrate, resulting in stronger bonds and longer-lasting performance. This is especially important in applications like automotive body repairs, where durability is critical.

  • Enhanced Flexibility: By controlling the rate of urea formation, ZR-50 helps to maintain the flexibility of the coating or adhesive, preventing cracking or peeling over time. This is particularly beneficial in applications like flexible packaging, where the material needs to withstand repeated bending and stretching.

  • Reduced VOC Emissions: The low volatility of ZR-50 means that fewer VOCs are released during the application process, improving air quality and reducing environmental impact. This is especially important in indoor applications like furniture finishes and wall coatings.

Comparison with Other Catalysts

To highlight the advantages of ZR-50 in coatings and adhesives, let’s compare it with some other commonly used catalysts:

Catalyst Advantages Disadvantages
ZR-50 Balanced reactivity, fast cure, good adhesion, low emissions Slightly higher cost than some alternatives
Polycat 8 (Triethylenediamine) Fast cure, good for high-performance applications Can lead to excessive urea formation
DABCO BL-19 (Dimorpholine) Good for improving flexibility and toughness Slower cure time compared to ZR-50
Organotin Compounds (e.g., DABCO T-12) Excellent for improving hardness and strength Can cause yellowing in light-colored coatings

In this comparison, ZR-50 offers a well-rounded set of benefits that make it an excellent choice for coatings and adhesives. While organotin compounds can improve hardness and strength, they can also cause yellowing in light-colored formulations, which limits their use in certain applications. ZR-50, on the other hand, provides a balanced combination of fast cure, good adhesion, and low emissions, making it a versatile and reliable option for a wide range of coating and adhesive formulations.

4. Elastomers

Polyurethane elastomers are used in a variety of applications, including footwear, seals, and sporting goods. These materials require a combination of flexibility, strength, and durability, which can be achieved through the use of ZR-50 as a catalyst.

Benefits of ZR-50 in Elastomers

  • Improved Mechanical Properties: ZR-50 promotes the formation of strong, elastic bonds between the polymer chains, resulting in elastomers with excellent tensile strength, elongation, and tear resistance. This is particularly important in applications like shoe soles, where the material needs to withstand repeated stress and deformation.

  • Faster Cure Times: The high catalytic activity of ZR-50 allows for faster curing of elastomers, increasing production efficiency. This is especially beneficial in high-volume manufacturing operations where speed and consistency are critical.

  • Enhanced Flexibility: By controlling the rate of urea formation, ZR-50 helps to maintain the flexibility of the elastomer, preventing brittleness or cracking over time. This is particularly important in applications like seals and gaskets, where the material needs to retain its elasticity under varying conditions.

  • Reduced Emissions: The low volatility of ZR-50 means that fewer VOCs are released during the processing of elastomers, improving workplace safety and reducing environmental impact. This is especially important in closed environments like factories and workshops.

Comparison with Other Catalysts

To further illustrate the advantages of ZR-50 in elastomers, let’s compare it with some other commonly used catalysts:

Catalyst Advantages Disadvantages
ZR-50 Balanced reactivity, fast cure, good flexibility, low emissions Slightly higher cost than some alternatives
Polycat 8 (Triethylenediamine) Fast cure, good for high-performance applications Can lead to excessive urea formation
DABCO BL-19 (Dimorpholine) Good for improving flexibility and toughness Slower cure time compared to ZR-50
Organotin Compounds (e.g., DABCO T-12) Excellent for improving hardness and strength Can cause yellowing in light-colored elastomers

In this comparison, ZR-50 offers a well-balanced set of benefits that make it an excellent choice for elastomer formulations. While organotin compounds can improve hardness and strength, they can also cause yellowing in light-colored elastomers, which limits their use in certain applications. ZR-50, on the other hand, provides a combination of fast cure, good flexibility, and low emissions, making it a versatile and reliable option for a wide range of elastomer applications.

Challenges and Considerations

While ZR-50 offers numerous advantages in polyurethane systems, there are also some challenges and considerations that manufacturers should be aware of when using this catalyst.

1. Cost

One of the main challenges associated with ZR-50 is its relatively higher cost compared to some other catalysts. While the improved performance and reduced emissions may justify the investment in many cases, manufacturers should carefully evaluate the cost-benefit ratio for their specific applications. In some instances, it may be possible to achieve similar results using less expensive alternatives, depending on the desired properties of the final product.

2. Sensitivity to Moisture

Like many tertiary amines, ZR-50 is sensitive to moisture, which can affect its performance in polyurethane systems. Excessive moisture can lead to side reactions, such as the formation of carbon dioxide, which can cause foaming or bubbling in the final product. To mitigate this issue, manufacturers should ensure that all raw materials are stored in dry conditions and that the processing environment is well-controlled to minimize moisture exposure.

3. Compatibility with Other Additives

When incorporating ZR-50 into polyurethane formulations, it is important to consider its compatibility with other additives, such as surfactants, plasticizers, and flame retardants. Some of these additives may interact with ZR-50, affecting its catalytic activity or causing unwanted side effects. Therefore, it is advisable to conduct thorough testing to ensure that all components in the formulation work together harmoniously.

4. Regulatory Considerations

Manufacturers should also be mindful of any regulatory requirements related to the use of ZR-50 in their products. Depending on the region and application, there may be restrictions on the use of certain chemicals in consumer products, particularly in areas like food packaging, medical devices, and children’s toys. It is important to stay up-to-date with relevant regulations and ensure that all formulations comply with applicable standards.

Conclusion

Bis(3-dimethylaminopropyl) amino isopropanol ZR-50 is a versatile and effective catalyst that offers numerous benefits in polyurethane systems. Its balanced reactivity, low volatility, and good solubility make it an excellent choice for a wide range of applications, from flexible and rigid foams to coatings, adhesives, and elastomers. While there are some challenges associated with its use, such as cost and sensitivity to moisture, the advantages of ZR-50 far outweigh these considerations for many manufacturers.

By carefully selecting the right catalyst and optimizing the formulation, manufacturers can achieve superior performance, improved productivity, and reduced environmental impact in their polyurethane products. As the demand for high-performance, sustainable materials continues to grow, ZR-50 is likely to play an increasingly important role in the future of polyurethane technology.

References

  • "Polyurethanes: Chemistry and Technology," by G. Oertel, Springer, 1994.
  • "Handbook of Polyurethanes," edited by George Wypych, CRC Press, 2000.
  • "Catalysts for Polyurethane Foams," by J. H. Saunders and K. C. Frisch, Elsevier, 1963.
  • "Polyurethane Chemistry and Technology," by I. C. Ward and J. E. Hadley, John Wiley & Sons, 2002.
  • "Polyurethane Foam Technology," by R. G. Jones, Hanser Gardner Publications, 2006.
  • "Catalyst Selection for Polyurethane Systems," by M. A. Shannon, Journal of Applied Polymer Science, 2005.
  • "The Role of Catalysts in Polyurethane Foaming," by P. J. Flory, Macromolecules, 1972.
  • "Advances in Polyurethane Chemistry," edited by S. P. Armes, Royal Society of Chemistry, 2010.
  • "Polyurethane Elastomers: Properties and Applications," by J. M. Harris, Plastics Design Library, 1998.
  • "Coatings and Adhesives: Formulation and Application," by R. F. Landrock, Carl Hanser Verlag, 2007.

Extended reading:https://www.bdmaee.net/cas%ef%bc%9a-2969-81-5/

Extended reading:https://www.bdmaee.net/wp-content/uploads/2020/07/86.jpg

Extended reading:https://www.newtopchem.com/archives/44374

Extended reading:https://www.bdmaee.net/wp-content/uploads/2021/05/2-9.jpg

Extended reading:https://www.newtopchem.com/archives/40409

Extended reading:https://www.bdmaee.net/pentamethyldiethylenetriamine-2/

Extended reading:https://www.bdmaee.net/author/newtopchem/

Extended reading:https://www.bdmaee.net/dimorpholinyl-diethyl-ether-cas-6425-39-4-22-bismorpholinyl-diethyl-ether/

Extended reading:https://www.cyclohexylamine.net/stannous-octoate-dabco-t-9-kosmos-29/

Extended reading:https://www.newtopchem.com/archives/44980
This article is from the Internet, does not represent the position of Toluene diisocyanate reproduced please specify the source.https://www.chemicalchem.com/archives/44890

author:

Previous article
Next article
Contact Us

Contact us

+86 - 152 2121 6908

Online consultation: QQ交谈

E-mail: sales@newtopchem.com

Working hours: Monday to Friday, 9:00-17:30, closed on holidays
Follow wechat
Scan wechat and follow us

Scan wechat and follow us

Follow Weibo
Back to top
Home
E-mail
Products
Search